Dopamine: Receptors, Functions, Synthesis, Pathways, Locations and Mental Disorders: Review of Literatures

نویسنده

  • Getinet Ayano
چکیده

Dopamine is monoamine neurotransmitter. Dopamine is produced in the dopaminergic neurons in the ventral tegmental area of the substantia nigra, midbrain and the arcuate nucleus of the hypothalamus. In the periphery, dopamine is found in the kidney where it functions to produce renal vasodilation, diuresis, and natriuresis. Dopamine neurons are more widely distributed than those of other monamines and it is found in hypothalamus, olfactory bulb, the midbrain substantia nigra and ventral tegmental area and in the periaqueductal gray and retina. There are five subtypes of dopamine receptors, D1, D2, D3, D4, and D5, which are members of the large G-protein coupled receptor super family. The dopamine receptor subtypes are divided into two major subclasses: types 1 and 5 are similar in structure and drug sensitivity, and these two receptors are referred to as the "D1like" group or class of receptors. Dopamine receptor types 2, 3, and 4 are called the "D2like" group. Dopamine plays central role in pleasurable reward behavior, inhibition of prolactin production (involved in lactation), sleep, mood, attention, learning, behavior, control of nausea and vomiting and pain processing. In addition it also involved in controlling movement, emotion and cognition. Due to extensive localization of dopamine receptor to brain areas and its role in wide range of functions, dopaminergic dysfunction has been implicated in the pathophysiology of schizophrenia, mood disorders, obsessive compulsive disorder (OCD), autism spectrum disorders, attention deficit–hyperactivity disorder (ADHD), tourette's syndrome, substance dependency, Parkinson's disease and other disorders. the D2 receptor, implicating this subtype as an important site of antipsychotic drug action [3,4]. D1 receptor has high affinity for the antagonist SCH 23390 and relatively low affinity for butyrophenones such as haloperidol. D1 receptor activation stimulates cyclic adenosine monophosphate (cAMP) formation, D2 receptor stimulation produces the opposite effect. In addition to the stimulation of adenylate cyclase, D1 receptors may also stimulate phosphoinositide turnover and modulate intracellular calcium levels [1,3]. The D1 receptors are found in high concentration in the hypocampus, caudate, putamen, nucleus accumbens, hypothalamus, substantia nigra pars reticulata, olfactory tubercle and frontal and temporal cortex [3,5]. D1 receptors have been implicated in the cognitive functions of dopamine such as the control of working memory and attention. D1 receptors contribute significantly to the CNS effects of cocaine, suggesting the involvement of other receptors in addition to the D2 receptor, in mediating rewarding effects of drugs of abuse [1,3,5]. D1 and D5 receptors have a higher degree of homology with each other than with the D2–4 subtypes. D5 receptor has 50% homology

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A review of the role of dopamine receptors and novel therapeutic strategies in non-small cell lung cancer (NSCLC)

Lung cancer is a very aggressive and most deadly cancer in both men and women. Lung cancer is divided into two types of small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC is divided into 3 subgroups: adenocarcinoma (AC), squamous cell carcinoma (SqCC) and large cell carcinoma (LCC). Dopamine is involved in controlling motions, cognition, emotions, memory and reward mech...

متن کامل

EFFECTS OF CATECHOLAMINES ON DOPAMINE AND SEROTONIN SYNTHESIS IN RAT BRAIN STRIATAL SYNAPTOSOMES: THE ROLE OF PRESYNAPTIC RECEPTORS AND THE SYNAPTOSOMAL REUPTAKE MECHANISM.

The regulation of dopamine and serotonin synthesis in rat brain striatal synaptosomes has been studied using HPLC methods. Noradrenaline was shown to markedly inhibit both the synthesis of dopamine and serotonin. The response of the synaptosomes to the concentrations of noradrenaline appeared to be biphasic, a very effective inhibition occurring at low concentrations (1-5 µm) and a relativ...

متن کامل

Dopamine-Synthesizing Neurons: An Overview of Their Development and Application for Cell Therapy

Cell-gene therapy is a dynamic constituent of novel medical biotechnology. Neurodegenerative disordersin which damage to or demise of specific brain cell types plays central role, are clear examples of diseasecandidate for cell replacement therapy. Dopaminergic (DAergic) neurons biosynthesize dopamine, a vitalneurotransmitter in the central nervous system. Due to the involveme...

متن کامل

The Effect of Inhibition of Dopamine D2 Receptors on Some of the Peripheral Blood Mononuclear Cells of the Rat under Food restriction

Background & Objective: In previous studies, the effects of food restriction on the changes in immune responses and brain dopamine content have been determined. On the other hand, it has been shown that immune cells, in addition to dopamine production, also have dopamine receptors. The purpose of this study was to evaluate the effect of inhibition of D2 dopamine receptors on several functions o...

متن کامل

Interactions between Histamine H1 and H3 and Dopamine D1 Receptors on feeding behavior in chicken

BACKGROUND: Brain monoamines (such as histamine and dopamine) play an important role in emotions, cognition, reward and feeding behavior. The interactions between histamine and dopamine were studied in many physiological functions but this correlation is unclear in feeding behavior of chickens. The aim of this study was to investigate the interaction of central histaminergic and dopaminergic sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016